

EXAM II LIST OF TOPICS

Below are the topics we have covered in the course so far listed by chapter.

(chapter 5) — Exponential and Logarithmic Functions

(5.1) – Combining Functions (page 349)

- Know how to perform the four basic operations on functions () and know how to evaluate those functions at specific values analytically, numerically (given a table), and graphically (given a graph).
- Know how to find composite functions given each function, a table of values, or a graph of each function
- o Be able to find the domain of composite functions.

(5.2) – Inverse Functions and Their Representations (page 365)

- Know how to check if a function is one-to-one (and further, know what one-to-oneness means).
- Be able to find the inverse function of one-to-one functions (use the step by step process we
 went over in class with switching the x and y)
- Understand what it means for two functions to be inverses (know what inverse means)
- o Know that when you compose a function with its inverse (and vice-versa) you get the input x.
- Understand what it means for two functions to be inverses in relation to their graphs (they are reflections across the line y=x)

(5.3) – Exponential Functions and Models (page 380)

- Know how to find the equation of an exponential function of the form given a table of data.
- o Know the formulas for:
 - Compound interest
 - o Continuous compound interest
 - Radioactive decay
- o Know how to use the above formulas (examples are given in the chapter section)

(5.4) – Logarithmic Functions and Models (page 399)

- Know the basic facts/properties about logarithms (i.e. they are the inverse of exponential functions, , , etc...)
- Understand what a logarithm is asking you (is asking: "to what power must be raised in order to get).
- Know how to solve simple logarithmic and exponential equations (using the fact that log functions and exponential functions are inverses).
- o Be able to convert from exponential form to logarithmic form

(5.5) – Laws of Logarithms (LoLs) (page 415)

- o Know the 4 LoL's and how to use them to expand or combine expressions.
- Know how to use the change of base formula

(5.6) – Exponential and Logarithmic Equations (page 423)

- o Know how to solve more complex logarithmic equations
- o Know how to solve more complex exponential equations
- Essentially, section 5.6 is all about solving equations utilizing the laws of logarithms in combination with the solving skills you learned in section 5.4 (by using the inverse function to get

(5.7) - Constructing Nonlinear Models (page 460)

- Know how to make a scatterplot of given data and determine which model to use
- Understand how to find the "least squares" (best fit) regression line on your calculator

(3.5) - Transformations (page 206)

Know how to use transformations to manipulate graphs and their tables.

(Notecard worthy information) – Just a small sample of things you may want to put on the notecard.

- o Formulas for compound interest and continuous compound interest
- o Formula for half-life
- Maybe an example of composition of functions
- o Major definitions (like def. of inverse)
- o Laws of Logs
- o Change of base formula
- o Etc...

(Additional Thoughts)

Remember: you have only 50 minutes to take the exam – therefore I won't be able to put ALL of the stuff on this review on the exam itself. There are 3 main resources I use for my exams:

- i) Notes
- ii) Homework
- iii) Review (both online and in class)

Please make sure you are as ready as you can be! My general advice is to **put yourself into a testing situation**. I think that a lot of students may study for an exam, but never actually set aside 50 minutes to do 12 or 13 problems – forcing them to be in a time situation. That would be analogous to running a race but never running a practice race, or a tempo run. **Make sure you try to do a set amount of problems in 50 minutes** – that way when you get to the exam, the time constraint isn't so much stress!